GAP法:外れ値除外の新手法と野生動物GPSデータへの適用

GAP method: a new technique for removing data outliers and its application to wildlife GPS data

平川 浩文 (無所属)

村松 大輔

(京大WRC/JST/JICA, SATREPS/奈教自然セ)

Marcelo Gordo (UFAM/Brazil)

瀧井 暁子・泉山 茂之

(信州大学 山岳科学研究拠点)

2022年3月14-19日 日本生態学会69回大会

要旨

データセット内の外れ値は分析者にとってノイズあるいは信号として気になる存在であ る。外れ値を検出するには、各データ点がデータ空間内のどこに位置しているかを数値化 し、外れ値とそれ以外を分けるための閾値を設定する必要がある。しかし、後者はこれまで 実質的に分析者の主観に委ねられてきた。演者らは、野生動物GPSデータから外れ値を除 外するため、この技術的な空白を埋める手法を開発した。野生動物GPSデータは測定に複 数の要因が関与し、それぞれが状況により複雑に変化するため、測定精度が不安定で非常 に広い範囲の外れ値を含むことが少なくない。こうした外れ値の閾値を探すため、この手法 はデータが値の昇順に並べられたデータセットにおける隣接データ間の値のギャップを利用 する。核となるアイデアは、データセット上位集団の中で最大のギャップを見つけ、その ギャップから上を外れ値とみなして除外することであり、この除外を除外後のデータセット でも繰り返す。この反復をいつやめるかは分析者に委ねられる。しかし、本手法によって分 析者は意味ある少数の候補を得ることができる。時系列データや多次元データの場合でも 問題となる特異性を数値化して単変量のデータセットを作成すれば、この手法を利用でき る。手法の適用例をブラジル、マナウスの熱帯林に生息するナマケモノと日本の中部山岳 地帯に生息するシカのGPSデータで示す。この外れ値検出の手法は、野生動物GPSに限ら ず、幅広い分野のデータで応用可能である。

はじめに

外れ値検出

二つの過程、数値化と二分化、が必要。 従来研究はほぼすべて数値化に関連。

二分化(閾値設定)は分析者の主観任せ。

野生動物GPSデータの特徴

測定精度に影響する要因が多数。

それぞれが状況により複雑に変化。

その結果、精度が安定せず、広範囲の外れ値を含む。

外れ値検出の二分化(閾値設定)手法 GAP法 を開発

GAPの定義とGAP法の原理

GAP法はギャップ度GAPを外れ値の閾値設定に利用する。GAPの定義は次の通り。

正値のデータが昇順に並んだデータセットにおいて、 隣接データの値をA, Bとし、 $A \le B$ のとき、 **GAP** = B / A (定義により **GAP** \ge 1)。

GAP法の原理は、データ上位集団で最大GAPを持つ組を見つけ、その間を境に上位のデータを外れ値として除外することであり、これを除外後のデータセットでも最大GAPが一定レベルを下回るまで繰り返すこと。

GAPの具体例

なぜこの原理が働くのか、GAPの具体例で検討したい。

10個の正数からなる、次のデータセットを仮定しよう。 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) このデータセットは次の9個の**GAP**を持つ。 (2.00, 1.50, 1.33, 1.25, 1.20, 1.17, 1.14, 1.13, 1.11) このとき、**最大GAP**は2.00でデータ1と2の間にある。

この例に限らず、正の等差数列における**最大GAP**はつねに、 最小とその次の値の間にある。

一方、等比数列のGAPは定義によりすべて等しい。

GAPの性格

一般に、広い範囲の正の実数が昇順に並ぶデータセットにおいて下端近くでは、僅かな値の差でも大きなGAPをとりうる。しかし、上端近くで大きなGAPをとるには、値の差が非常に大きくなければならない。

GAPのこの性格から、次の3点が示唆される。

1) **GAP**は外れ値の閾値を探る道具として、データ上部でのみ有効。2) データ最上位部で大きな**GAP**を期待できるのは、そこのデータ分布が疎なときだけで、まさに外れ値がある状況。データ範囲が下がりデータ分布が密になってくると、閾値を示す道具として**GAP**の有効性は低下。3) **GAP**は正値の比として定義されるので、比例尺度のデータセットで有効。

GAP法の基本手続き

GAP法の基本手続きは次の通り。

- 1) データセットのデータを昇順に並べる。
- 2) 値が上位のデータ集団の中で**最大GAP**を持つ組を見つけ、 その間を境に上位のデータをすべて外れ値とする。
- 3) データセットから外れ値を除外する。
- 4)除外後のデータセットを用いて、2)に戻る。

この反復をいつやめるかは分析者に委ねられるが、反復で急速に低下する**最大GAP**が良い指標。経験的にはこれが<u>1.10</u>を下回ると継続可否の判断が必要。実際の運用で**最大GAP**を探す上位集団の割合をデータサイズの5%とした。除外率はこれよりはるかに低かったので、結果的にこの範囲で十分と判断された。

時系列や多次元データの場合

基本手続きは単変量で順番に意味がないデータセットでのみ有効。

時系列データセットでは、個々のデータの値ではなく、前後のデータの値と<u>関係</u>の特異性が問題となったり、多変量データセットでは、個々の変量の値ではなく、多変量の合成値の特異性が問題となったりする。

この場合、GAP法の原理を適用の前に、元のデータセットからこうした特異性を数値化して新たなデータセットを作成する。これを「特異度データセット」と呼ぶ。

特異度算出の方法は一意には定まらない。問題の性格に合わせて個別に考案する必要がある。

GAP法の一般化手続き

一般化手続きは次のとおり(色文字が基本手続きからの変更点)。

- 0) 元データセットから特異度データセットを作成する。
- 1)特異度データセットのデータを昇順に並べる。
- 2) 値が上位のデータ集団の中で**最大GAP**を持つ組を見つけ、 その間を境に上位のデータをすべて外れ値とする。
- 3) 元データセットからこれに対応するデータを除外する。
- 4)除外後の元データセットを用いて、○)に戻る。

基本手続きと異なるのは、0)が加わり、さらに0-1)が反復に加わったこと。0)で特異度データセット作成が毎回必要になるのは、3)で元データセットが間引かれてデータの構造・相互関係が変化するため。3)では、2)で示された特異度データセット内の外れ値を元データセット内のデータ除外のために利用。元データセットと特異度データセットが1対1対応する場合、3)は上記のように単純。1対1対応しない場合、一般化が困難なため適用例2で具体例を提示する。

野生動物GPSデータへの適用

適用例1

ニホンジカの標高データ

目的: 突出標高の除外

場所:北アルプス

装置:首輪型,測位間隔:2時間

GAP法

個別の標高値:基本手続き

標高値の変化:一般化手続き

メモ:

1)適用例では、<u>標高値の変化による除</u>外だけでもすべて除外可。ただ、これでは異常標高の連続に対処不能なため、個別標高値による除外を用意。そのGAP度下限値が高い(1.5)のはそのため。

2)標高の変化では下方突出も除外可。

適用例2

ミユビナマケモノの経緯度データ

目的:孤立測位点(群)の除外

場所:ブラジル・マナウス

装置:背負子型, 測位間隔:15分

GAP法

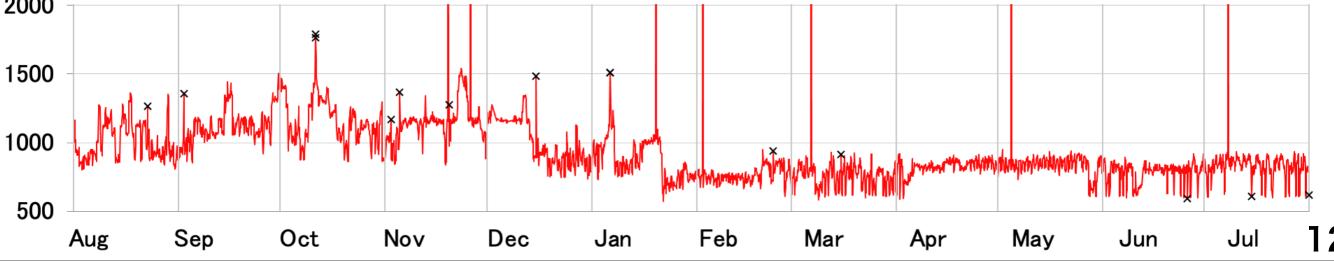
元と特異度のデータセットが1対1 対応しない場合の一般化手続き

メモ:

- 1) GAP法で直接扱うのはXY座標で 経緯度データは毎回XY座標化。
- 2)座標化は正射図法による。
- 3) 反復ごとに空間スケールが急激に縮小することに注目。
- 4) GAP法以外による除外も次に用意。

適用例1:突出標高除外

- 2つの手続きによる段階的除外
- 1) 基本手続きにより個別標高値(元データセットをそのまま使用)
- 2) 一般化手続きにより標高変化(特異度3種類を定義。下記参照)


```
元データセット(標高の時系列)
(H<sub>1</sub>, H<sub>2</sub>, H<sub>3</sub>, ..., H<sub>i-2</sub>, H<sub>i-1</sub>, H<sub>i</sub>, H<sub>i+1</sub>, H<sub>i+2</sub>, ...)
特異度データセット(標高変化の時系列)
(S<sub>1</sub>, S<sub>2</sub>, S<sub>3</sub>, ..., S<sub>i-2</sub>, S<sub>i-1</sub>, S<sub>i</sub>, S<sub>i+1</sub>, S<sub>i+2</sub>, ...)
```

- 特異度定義(分析者が選択:どれでも両データセットは1対1対応)
- a) $S_i = (H_{i-1}) \times (H_i H_{i+1})$
- b) $S_i = (2H_i H_{i-1} H_{i-2}) \times (2H_i H_{i+1} H_{i+2})$
- c) S_i = 次の3つのうちの最大値 {(H_i H_{i-2}) x (H_i H_{i+1}), (H_i H_{i-1}) x (H_i H_{i-1}), (H_i H_{i-1}) x (H_i H_{i+2})}

適用例1:突出標高除外

ニホンジカ;期間365日(2012年8月-2014年7月);当初データ数4254

							標高突出の除外		除外候補		除外		
						定義	反復	最大GAP	しきい値	上頂点数	上下計	上頂点数	上下討
2段階	で最大	GAP	結果	最終		個別標高値	段階 1	4.765	/ 1788	7	7	7	7
除外	設定	下限値	反復数	最大GAF	· 除外数		停止	1.098	/ 1609	2	2		
別値		1.5	1 🗇	G=4.76		標高値変化	段階 1	3.178	/ 442133	1	1	1	1
							段階 2	1.484	/ 297920	1	1	1	1
化值	· G=	:1.1	4回	G=1.159	9 15	_	段階 3	1.411	/ 211214	1	1	1	1
							段階 4	1.159	/ 109984	9	12	9	12
モデー	-タヤッ	・ト(個	別煙淳	値)によ	る除外		停止	1.068	/ 42261	16	46		
	, ,	1 (11=			G [20,7]						計	19	22
5000					×								
										×			
0000							v						
							Î ×	*				1	
5000													
^	Land And Control	and harmon	Mary - July	when we want		Lander and Land	ــــــــــــــــــــــــــــــــــــــ		man man		and the same of th		Martin
0	_												
	Aug	Sep	Oc	ct No	v D	ec Jan	Feb	Mar	· Apr	May	Ju	n Jul	

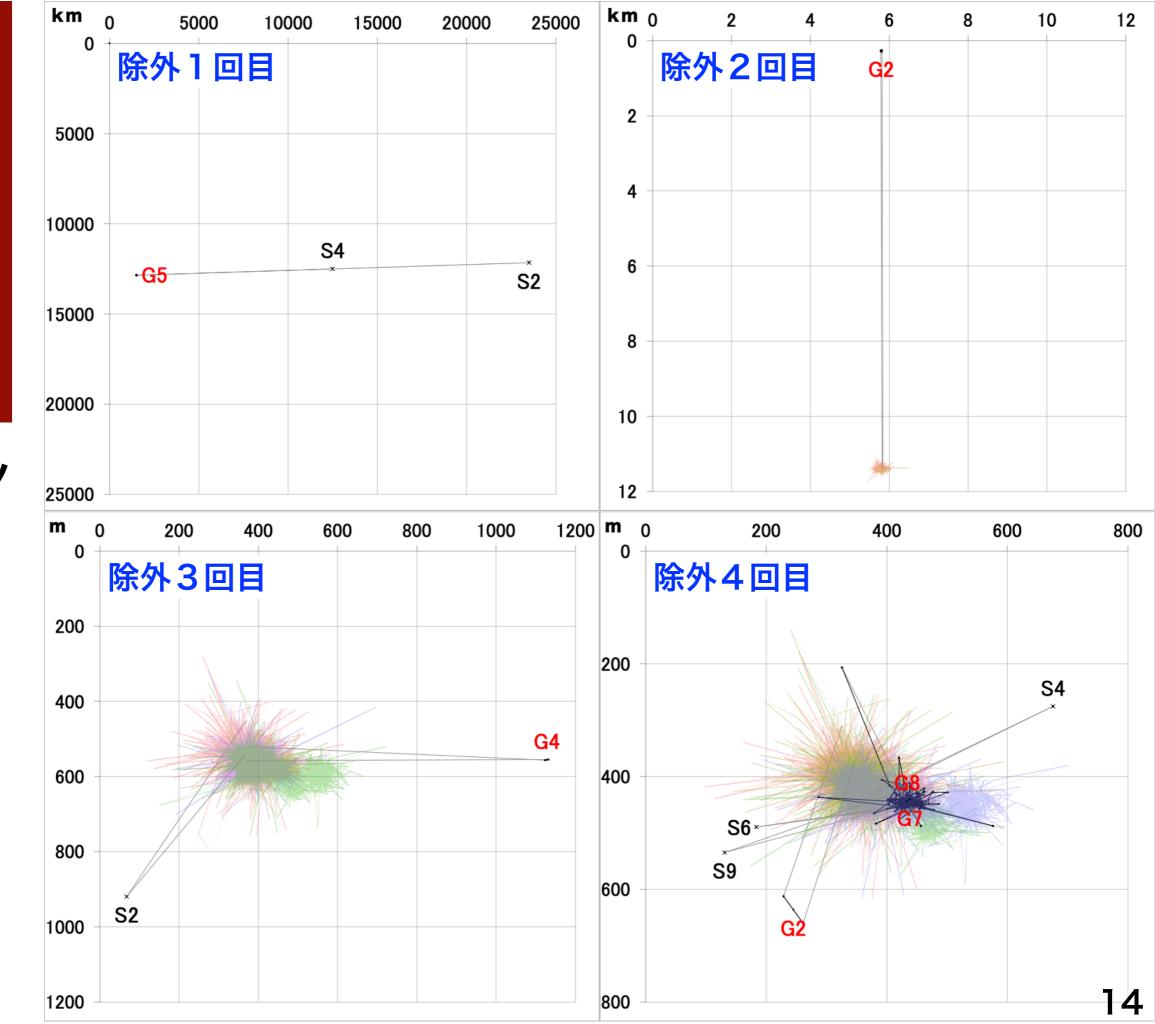
適用例2:孤立点(群)の除外

各測位点の経緯度から測位点間ユークリッド距離からなる特異度データセットを作成:二つのデータセットは1対1対応せず

```
元データセット(各測位点の経緯度)
((Lt<sub>1</sub>,Ln<sub>1</sub>), (Lt<sub>2</sub>,Ln<sub>2</sub>), (Lt<sub>3</sub>,Ln<sub>3</sub>), (Lt<sub>4</sub>,Ln<sub>4</sub>), (Lt<sub>5</sub>,Ln<sub>5</sub>), (Lt<sub>6</sub>,Ln<sub>6</sub>), ...)
中間データセット(各測位点のXY座標)
((X<sub>1</sub>,Y<sub>1</sub>), (X<sub>2</sub>,Y<sub>2</sub>), (X<sub>3</sub>,Y<sub>3</sub>), (X<sub>4</sub>,Y<sub>4</sub>), (X<sub>5</sub>,Y<sub>5</sub>), (X<sub>6</sub>,Y<sub>6</sub>), ...)
特異度データセット(連続測位点間のユークリッド距離)
(D<sub>12</sub>, D<sub>23</sub>, D<sub>34</sub>, D<sub>45</sub>, D<sub>56</sub>, ...)
```

一般化手続き3)の具体例

- 3-1) 元データセットを外れ値の距離があるところで分割
- 3-2) 分割群中、単独あるいは少数点群を抽出して除外候補に
- 3-3) 分割群を色分けし、除外候補がわかるように地図に表示
- 3-4) 地図空間上で孤立が明確な除外候補を分析者が選んで除外


適用例 2 孤立点 群の 除外

ナマケモノ

期間243日 2019年10月 -2020年6月

当初データ数 22618

次ページに 各段階の 詳細データ

適用例2:孤立点(群)の除外

除外1回目

最大GAP: 979

閾値: /11243

分割群数:5

除外3回目

閾値: /337

分割群数:5

グループ

G1

S2

G3

G4

G5

最大GAP: 1.42

除外群候補数: 2

サイズ

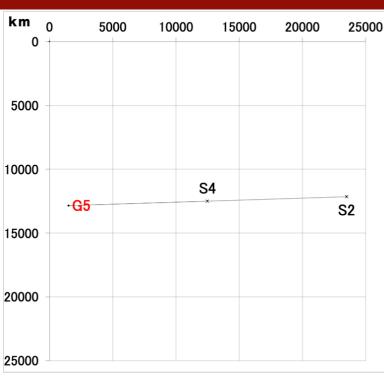
11533

6214

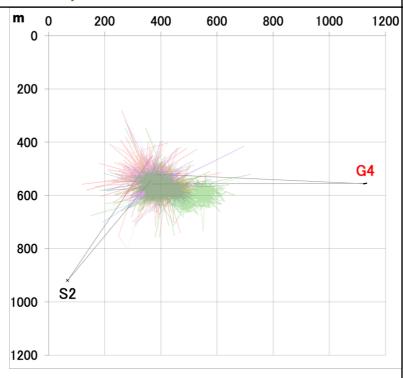
4862

22612

除外候補


1

2


3

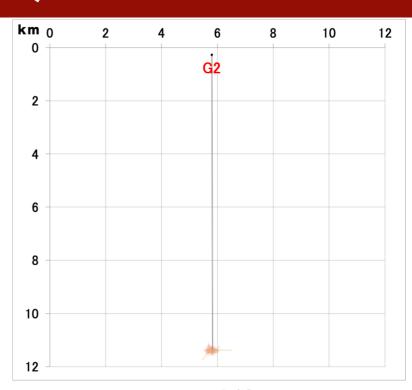
除外群候補数: 3

グループ	サイズ	除外候補
G1	16620	
S2	1	1
G3	5993	
S4	1	1
G5	3	3
計	22618	5

S2,S4を除外、G5は除外せず

S2,G4を除外

除外2回目


最大GAP: 14.5

閾値: /763

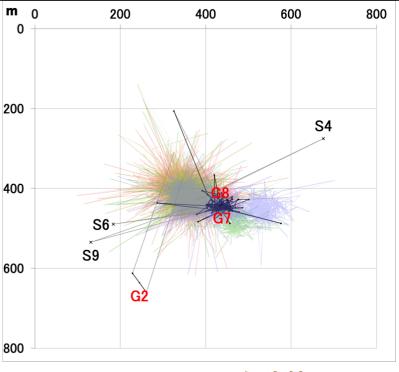
分割群数: 3

除外群候補数: 1

グループ	サイズ	除外候補
G1	16286	
G2	4	4
G3	6326	
計	22616	4

G2を除外

除外4回目


最大GAP: 1.09

閾値: /265

分割群数: 10

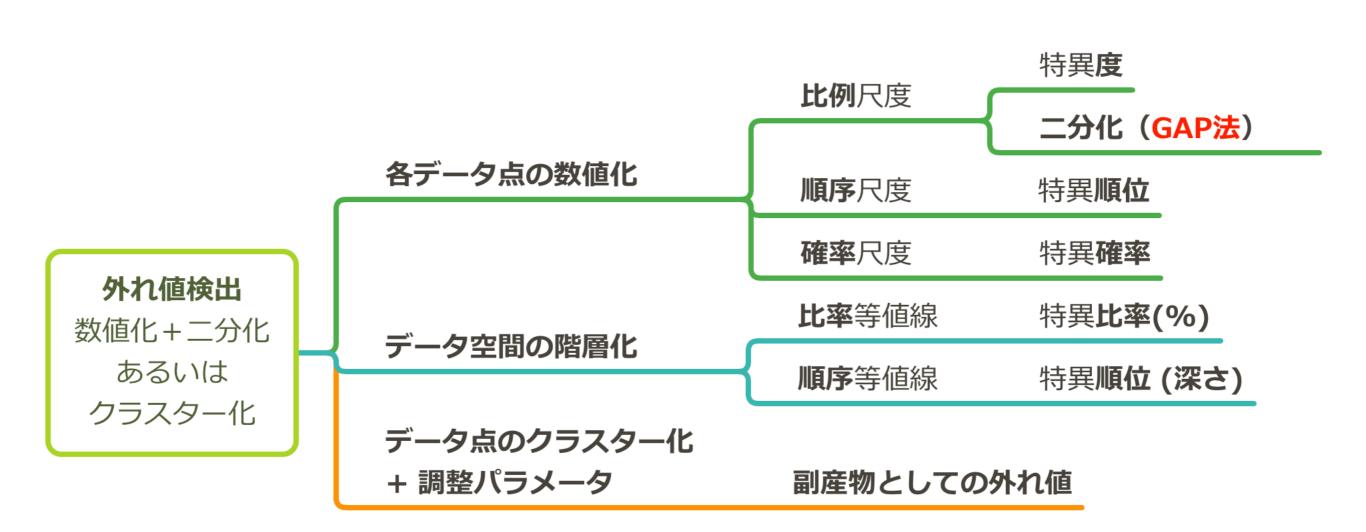
除外群候補数: 6

グループ	サイズ	除外候補				
G1	8148					
G2	2	2				
G3	4465					
S4	1	1				
G5	5937					
S6	1	1				
G7	78	78				
G8	69	69				
S9	1	1				
G10	3907					
計	22609	152				

G2,S4,S6,S9を除外 G7,G8は除外せず

GAP法提案の意味

外れ値検出の分野(統計学・データサイエンス)で 学習を要しない二分化手法として初。


原理(値の大きいギャップで外れ値を区分)は直感的。 これまでも分析者が無意識に利用してきた可能性あり。 これを初めて手法化。

最大の特長:

主観を抑えて少数の意味ある閾値候補を得られること。

最終判断は分析者に委ねる。ただし、**最大GAP1.10**が 目安。これを切ると、手続きの反復停止の考慮が必要。

外れ値検出におけるGAP法

数値化に基づく外れ値検出の手法分類と GAP法の位置づけ

除外の包括性・階層性

手続きに反復性があり、広範囲の外れ値を除外可。装置 やシステムのエラーに伴う異常値の認知は容易だが、その 他の外れ値も併せて包括的に除外可能。

除外が段階的に行われるため、外れ値の階層化が可能。 外れ値の原因解明などに有用。

汎用性と簡易性

GAP法は原理として、順番に意味がない単変量の比例尺度データで有効(基本手続き)。

しかし、時系列データでも多変量データでも、問題とする特異性を比例尺度で数値化すれば適用可能(一般化手続き)。 そうした数値化手法はすでに多数存在する。 ただ、GAP法を前提にすると手間が軽減される。

例えば、GAP法は比例を使うため、標準偏差や四分位数間領域といった測定の単位には意味がなく、考慮不要。また、測定の原点は、データ分布の平均、中央値、最頻値ほか使いやすい点で良い。GAP法はこの選択に堅固robustだから。

外れ値とは何か?

外れ値検出の研究:

長年、データの特異性の数値化(特異度算出)に腐心。

次の段階、**二分化**(閾値設定)で想定されている問いかけ。 「値がどれだけ大きければ、外れ値とみなすべきか?」

これに代わるGAP法の問いかけ。

「値のギャップがどれだけ大きければ、外れ値を区分すべきか?」 問いの根本的シフト。この方が人間の外れ値認識に近い。

GAP法:

外れ値とは何か、外れ値検出のために外れ値の影響をどう抑えるか といった、積年の混迷した議論に対する一つの解。